Convention de sommation d'Einstein

En mathématiques et plus spécialement dans les applications de l'algèbre linéaire en physique, la convention de sommation d'Einstein ou notation d'Einstein est un raccourci de notation utile pour la manipulation des équations concernant des coordonnées.

Selon cette convention, quand l'indice d'une variable apparaît deux fois dans un terme, on sous-entend la sommation sur toutes les valeurs que peut prendre cet indice. Cet indice est dit muet. On le fait figurer une fois en position supérieure (grandeur ou indice contravariant), une fois en position inférieure (grandeur ou indice covariant).

Un indice non muet est dit indice réel et ne peut apparaître qu'une seule fois dans le terme en question. Généralement, ces indices sont 1, 2 et 3 pour les calculs dans l'espace euclidien ou 0, 1, 2 et 3 ou 1, 2, 3 et 4 pour les calculs dans un espace de Minkowski, mais ils peuvent avoir d'autres valeurs ou même, dans certaines applications, représenter un ensemble infini. En dimension 3,

signifie donc

En relativité générale, l'alphabet latin et l'alphabet grec sont respectivement utilisés pour distinguer si la somme porte sur 1, 2 et 3 ou 0, 1, 2, et 3. Par exemple les indices i, j, … sont utilisés pour 1, 2, 3 et μ, ν, pour 0, 1, 2, 3.

Lorsque les indices se rapportent à des tenseurs, comme en relativité générale, les indices muets doivent apparaître une fois en haut et une fois en bas ; dans d'autres applications une telle distinction n'existe pas[a].

Une notation apparentée est la notation en indice abstrait.

  1. (en) Leonard Susskind et André Cabannes, General Relativity. The Theoretical Minimum, New York, Basic Books, , 373 p. (ISBN 9781541601772 et 9781541601796), p. 34-36.


Erreur de référence : Des balises <ref> existent pour un groupe nommé « alpha », mais aucune balise <references group="alpha"/> correspondante n’a été trouvée


Developed by StudentB